Ideological Perspective Detection Using Semantic Features
نویسندگان
چکیده
In this paper, we propose the use of word sense disambiguation and latent semantic features to automatically identify a person’s perspective from his/her written text. We run an Amazon Mechanical Turk experiment where we ask Turkers to answer a set of constrained and open-ended political questions drawn from the American National Election Studies (ANES). We then extract the proposed features from the answers to the open-ended questions and use them to predict the answer to one of the constrained questions, namely, their preferred Presidential Candidate. In addition to this newly created dataset, we also evaluate our proposed approach on a second standard dataset of “Ideological-Debates”. This latter dataset contains topics from four domains: Abortion, Creationism, Gun Rights and GayRights. Experimental results show that using word sense disambiguation and latentsemantics, whether separately or combined, beats the majority and random baselines on the cross-validation and held-out-test sets for both the ANES and the four domains of the “Ideological Debates” datasets. Moreover combining both feature sets outperforms a stronger unigram-only classification system.
منابع مشابه
CU-GWU Perspective at SemEval-2016 Task 6: Ideological Stance Detection in Informal Text
We present a supervised system that uses lexical, sentiment, semantic dictionaries and latent and frame semantic features to identify the stance of a tweeter towards an ideological target. We evaluate the performance of the proposed system on subtask A in SemEval2016 Task 6: “Detecting Stance in Tweets”. The system yields an average Fβ=1 score of 63.6% on the task’s test set and has been ranked...
متن کاملA Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection
Phishing is one of the luring techniques used to exploit personal information. A phishing webpage detection system (PWDS) extracts features to determine whether it is a phishing webpage or not. Selecting appropriate features improves the performance of PWDS. Performance criteria are detection accuracy and system response time. The major time consumed by PWDS arises from feature extraction that ...
متن کاملDesign and implementation of Persian spelling detection and correction system based on Semantic
Persian Language has a special feature (grapheme, homophone, and multi-shape clinging characters) in electronic devices. Furthermore, design and implementation of NLP tools for Persian are more challenging than other languages (e.g. English or German). Spelling tools are used widely for editing user texts like emails and text in editors. Also developing Persian tools will provide Persian progr...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملVHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine
Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...
متن کامل